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Abstract—In order to design efficient hardware implementa-
tions of cryptographic algorithms for a particular application, it
is often required to explore several architectures in order to select
the one that offers the appropriate trade-off between throughput
and hardware resources. A natural choice for performing a
design space exploration are the Field Programmable Gate
Arrays (FPGAs) for being reconfigurable, flexible and physically
secure devices. In this paper we explore several architectures for
implementing the SHA-512 algorithm based on the loop unrolling
technique and analyze their area-performance trade-offs. The
analysis consists on unrolling at different levels the main loop
which is the most costly part in the SHA-512 algorithm. The
resulting hardware architectures are implemented and analyzed
in order to identify the critical path and make decisions on the
architectural design. The obtained results provide a practical
guide to understand the effect of introducing different levels (1,
2, 4, 5, 8) of unrolling in terms of throughput and hardware
resources. The hardware architecture 4x that partially unrolls
four iterations of the main loop of the SHA-512 algorithm reports
the best performance compared against related works, while the
1x architecture exhibits the best efficiency.

I. INTRODUCTION

Hash functions are a kind of cryptographic algorithms
mainly used in digital signature algorithms to provide the
integrity and authentication security services [1], [2], [3].
There are several hash algorithms currently used in security
protocols for protecting digital communications, some of them
are MD5, SHA-0, SHA-1 and SHA-2 [4]. Compared with
other hash algorithms such as Haval [5] or Tiger [6], the
family of algorithms named SHA-2 are currently accepted as
a standard and recommended for practical uses [7]. In the
present, there is a competition to select the next standard of
hash algorithms named SHA-3 [8]. Efficient implementation
of hash function algorithms has been an active research topic,
being hardware implementation better preferred [5], [6], [9],
[10]. In hardware, the implementation of hash functions allows
to explore several techniques in order to meet specific require-

ments such as throughput, performance, area and power con-
sumption. Some of these implementation techniques include
loop unrolling, paralelization, segmentation, and iteration. The
critical part in the SHA-2 algorithms is a main loop that
executes 80 iterations to process a data blok and computes its
corresponding hash value. The high data dependency in this
main loop makes difficult to fully apply the parallelization and
segmentation techniques to design hardware architectures for
the SHA-2 family algorithms. In this work we explore the use
of the partial unrolling technique for designing and implement-
ing hardware architectures for the SHA-512 hash algorithm,
the most secure algorithm in the SHA-2 family. The results and
conclusions obtained on this work can be extended to other
SHA-2 algorithms and to other hash functions with similar
structure of the inner loop. Loop unrolling is a technique that
takes advantage of parallelism in a loop at data level. Loop
unrolling by a factor 𝑁 executes 𝑁 consecutive iterations
in the loop at a time. In this work, unrolling is applied at
different factors 𝑁 to execute more than one iteration at
a time in just one clock cycle. This implies a replication
considering the data dependency. As more hardware resources
are reused, interconnected and feedbacked, more input data
can be processed in less time, resulting in higher throughput
but, at the same time, the critical path also increases which
results in a reduction of the maximum operating frequency and
as a consequence a reduction of the overall performance. In
order to find the best area/performance trade off we analyze
in this work several hardware architectures for the SHA-
512 algorithm unrolling the main round at different levels.
The SHA-512 algorithm defines 80 iterations, each involving
several arithmetic and logic operations. We design hardware
architectures named 1x, 2x, 3x, 4x, 5x and 8x with loop
unrolling factors of 𝑁 = 1, 2, 4, 5, and 8 respectively. For
example, the hardware architecture 1x, with 𝑁 = 1, computes
all the instructions inside the main loop of the SHA-512

2012 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4767-1/12 $26.00 © 2012 IEEE

DOI 10.1109/ISVLSI.2012.63

63



TABLE I
CHARACTERISTICS OF SHA-2 FAMILY ALGORITHMS.

Algorithm SHA-1 SHA-256 SHA-384 SHA-512

Message size < 264 < 264 < 2128 < 2128

Block size 512 512 1024 1024

Word size 32 32 64 64

Message digest size 160 256 384 512

Security 80 128 192 256

algorithm in just one clock cycle. The entire loop is executed
in 80 clock cycles. The hardware architecture 2x with 𝑁 = 2
computes two iterations of the main loop in just one clock
cycle, reducing the computation time of the entire main to
40 clock cycles. The area/performance trade-offs presented in
this work allows to select the most appropriate implementation
of the SHA-512, compromising area, throughput, efficiency,
and power consumption. The hardware architecture 4x that
partially unrolls four iterations from the main loop reports
the best performance compared against related works, while
the 1x architecture exhibits the best efficiency. The rest of
this document is organized as follows: section 2 describes
the SHA-512 algorithm. Section 3 explains the design and
development of the proposed hardware designs. Section 4
discusses the implementation results in reconfigurable logic
and provides a comparison against related works. Finally,
section 5 concludes this work.

II. SHA-512 ALGORITHM

Algorithms in the SHA-2 family share a common functional
structure. The main differences among them are in the size
of the input data, the size of the block processed internally,
the word-size, and length of the digest computed by the hash
algorithm. The specific characteristics of SHA-2 algorithms
are shown in table I [7].

The execution of a hash function algorithm comprises two
stages: preprocessing and computing. The first stage guaran-
tees that the length 𝑛 of the input message be multiple of the
given block size (see table I), allowing the input message
to be divided into 𝑆 exact blocks 𝐵𝑖 (𝑖 = 1, 2, ..., 𝑆). In the
case of the SHA-512 algorithm, 𝐵𝑖 is of size 1024 bits. In
addition, in this stage a initial value is assigned to the set of
registers 𝐴, 𝐵, ...,𝐻 , that is, a initial hash value is given. In the
second stage, each block 𝐵𝑖 is processed iteratively through
80 rounds by a set of functions and mathematic operations. At
each round 𝑡, a constant 𝐾𝑡 and a word 𝑊𝑡 are generated and
used in functions that perform arithmetic and logic operations
to process the incoming block message 𝐵𝑖. The second stage
applies 80 iterations over 𝐵𝑖 and the result is a set of values
𝐴′, 𝐵′, ..., 𝐻 ′. Using these values, an accumulative sum is
performed over the set of register 𝐴, 𝐵, ..., 𝐻 to finally
compute an intermediate hash value of the given 𝐵𝑖 block.
The same process is applied to the next block 𝐵𝑖+1, where
the intermediate hash value computed for the previous block
becomes the initial hash value for computing the hash value
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Fig. 1. Functional description for the SHA-512 algorithm.
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Fig. 2. Pseudocode of the internal loop in the SHA-512 algorithm to compute
an intermediate hash value.

for the current one. After all 𝐵𝑖 blocks are processed the final
hash value of the incoming message is obtained, see Figure 1.

The SHA-512 algorithm exhibits a high data dependency
which challenges its hardware implementation and demands
high spatial and temporal computational resources. Depen-
dency is generated when lines 3-4 of algorithm shown in figure
2 are computed because most of the variables (registers) are
updated based on values computed in previous iterations.

III. PROPOSED HARDWARE ARCHITECTURES

The design methodology for the proposed hardware archi-
tectures for SHA-512 algorithm is based on three phases:

1) Analyze the best way to implement the main round of
the SHA-512 algorithm. In this round is located the high
data dependency and the critical path could be originated
in this part. This analysis is used to make decisions to
reduce the critical path by reorganizing the data flow in
the main round.

2) After analyzing the implementation of the SHA-512
main round, the entire loop of the SHA-512 algorithm
was implemented, taking into account the decisions
made in the previous step. In this phase, a 1x unrolled
fully iterative architecture that computes the hash value
in 80 clock cycles was designed.

3) Finally, the main loop is unrolled leading to different
hardware architectures named 𝑁x, being 𝑁 the factor
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Fig. 3. Block diagram for the SHA-512 algorithm.

of unrolling. The number of combinatorial stages is
incremented to compute more than one iteration at a
time, taking into account the generation of the proper𝑊𝑡

and 𝐾𝑡 values for a given round. What is not unrolled
is the logic for feedback, which is required when the
state buffer representing the intermediate hash value is
updated, that is, when more than one data block 𝐵𝑖 is
being processed.

Figure 3 shows the block diagram of the proposed unrolled
architectures. The general process for each unrolled architec-
ture is:

1) store in a memory named Buffer8× 64 the initial hash
value (initial values for the 8 registers).

2) generate the 𝐾𝑡 and 𝑊𝑡 at each round
3) compute the special functions 𝐶ℎ, 𝑀𝑎𝑗,

∑
0, and

∑
1

using the initial hash value.
4) update the 8 registers represented by the buffer Buffer8×

64.
5) finally, after the 80 required rounds, 8 adders are used

to compute the final hash value.

As the number of functional unrolled units increases inside
the hardware architecture for the SHA-512 algorithm, the
unique blocks that change their size and the size of their buses
are the ones located to the left of the unrolled block named
“Special Function”. For example, in the architecture 1x (the
main round is implementing using only one unrolling) one𝑊𝑡

and one 𝐾𝑡 value is generate at a time, both being 64-bit long.
𝐴 and 𝐸 are computed and the rest of variables are updated
from a redirection of the variables computed in the previous
stage, see Figure 3.

On the contrary, for the 2x architecture, the internal blocks
are duplicated and the size of the input buses changes while
the output buses remain unchanged. In this case, two words
𝑊𝑡, 𝑊𝑡+1 and two constants 𝐾𝑡, 𝐾𝑡+1 are needed. Also, the
double of adders and special functions are required. A block
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Fig. 4. Block diagram for words generation 𝐾𝑡 in the SHA-512 algorithm.

memory of (80/2)(64*2) = 40 locations per 128-bits is needed.
The rest of the blocks remain the same, i.e. the computation of
𝐴 and 𝐸, the adders for computing the final hash and hence,
the buses in the right side of figure 3. This same idea is applied
for the architectures 4x, 5x, and 8x.

The number of processing cycles is reduced when the “Spe-
cial Function” module is unrolled. Other important module
affecting the processing time of the SHA-512 algorithm is
the “ScheduleMessage”, that is shown in figure 4. The SHA-
512 algorithm establishes that the first 16 words 𝑊𝑡 in the
algorithm are taken directly from the input block and the next
64 words are generated from the first 16 words by applying
a series of special functions and arithmetic operations. In all
cases, only the last previous 16 words are used to compute
the next 16 words. Because of this, a memory of size 16× 64
bits = 1024 bits is needed. We use a linear memory of size
1024 bits to store all the 16 𝑊𝑡 words.

The “ScheduleMessage” module generates 𝑁 words 𝑊𝑡

according to the unrolling factor 𝑁 being used and the current
iteration 𝑡. As we commented before, a total of 80 iterations
are performed but 𝑁 of them are computed in a single clock
cycle. The control unit is implemented as a finite state machine
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Fig. 5. State diagram for the control unit of the SHA-512 algorithm.

whose main responsibility is to orchestrate the data flow.
Specifically, this module: 𝑖) multiplexes the 16 input words
𝑊𝑡 and the 64 words computed (using signal 𝑆𝑒𝑙1), 𝑖𝑖) selects
the initial value for the variables 𝐴, 𝐵, ..., 𝐻 (using signals
𝑆𝐸𝑙𝐻0 and 𝑆𝑒𝑙2), 𝑖𝑖𝑖) updates the intermediate hash value
when the number of blocks 𝐵𝑖 is greater than 1 (using signals
𝑆𝑒𝑙2 and𝑊𝑅), and 𝑖𝑣) generates the memory addresses to the
memory that stores the 64 constant 𝐾𝑡, using a 7-bit counter
controlled by the reset signal 𝑅𝑠𝑡𝐶 and the master clock. The
diagram of the control unit is shown in figure 5.

IV. RESULTS

The architecture has been modeled in the Very High Speed
Integrated Circuits Hardware Description Language (VHDL)
using the Active-HDL 8.2 tools and has been synthesized,
placed and routed with the ISE Foundation tools from Xilinx
and targeted to a Virtex-4 FPGA device. ISE tools allow
to calculate hardware resources utilized and maximum clock
frequency, useful parameters for measuring the Throughput
(Eq. 1) [11], Performance in relation to the clock frequency
(Eq. 2) and Efficiency which can be described as the ratio of
Performance against hardware resource requirements (Eq. 3).

Throughput =
𝑚× BS × 𝐹

Trpc + (𝑚× Tb)
(1)

Efficiency =
Throughput

Clock Frequency
(2)

Efficiency =
Throughput

Number of hardware resources
(3)

Table II shows an increase in hardware resources usage,
including LUTs and Slices, due to the internal components of
each replicated round and to the round unrolled 𝑁 times. In
this way, the architecture requires a higher amount of resources
both setting of the functional modules, and for buses routing,
this produces larger paths as the interconnection of modules
increases. Then, as frequency depends inversely to the critical

TABLE II
IMPLEMENTATION RESULTS OF THE SHA-512 ALGORITHM USING

UNROLLING FACTORS 𝑁 = 1, 2, 4, 5, 8.

Version Results Performance

1x 12.344 ns 1.024 Gbps

81.011 MHz 12.64 bps/Hz

81cc 4277 LUTs (2%) 0.239 Mbps/LUT

2667 Slices (2%) 0.384 Mbps/Slice

2x 17.937 ns 1.392 Gbps

55.751 MHz 24.97 bps/Hz

41cc 6582 LUTs (4%) 0.211 Mbps/LUT

4422 Slices (6%) 0.314 Mbps/Slice

4x 30.169 ns 1.616Gbps

33.147 MHz 48.76 bps/Hz

21cc 7408 LUTs (4%) 0.154 Mbps/LUT

5164 Slices (5%) 0.313 Mbps/Slice

5x 39.607 ns 1.520 Gbps

25.248 MHz 60.23 bps/Hz

17cc 10474 LUTs (5%) 0.145 Mbps/LUT

7054 Slices (7%) 0.215 Mbps/Slice

8x 70.033 ns 1.329 Gbps

14.279 MHz 93.09 bps/Hz

11cc 11255 LUTs (6%) 0.118 Mbps/LUT

6988 Slices (7%) 0.190 Mbps/Slice

path (largest combinational path) frequency decreases. In the
first classification, we find works with an iterative process and
with an unrolling of 1x, 2x and 5x, among others, see Table
III. When comparing this first set of related work, it can be
seen that the range of throughputs reported is large, from some
tens of megabits per second (Mbps) to over 1 Gbps. In general,
loop unrolling implementations proposed in this work increase
the throughput with low frequencies and higher cost of hard-
ware resources, but combining these results, it is shown that it
is possibel to obtain inprovement in efficiency. Particularly the
8x implementation of this work reaches maximum throughput
of 1.616 Gbps. Comparing the 2x unrolling architecture that
slightly overcomes the throughput reported in [12], the
proposed solution requires a lower frequency at the cost of
nearly half the hardware resources. Considering the required
hardware resources and comparing the 1x implementation
against the compact architecture reported in [13], the later
architecture requires 9% more resources, although it reports
4.5% of the throughput and a frequency over 8 times higher.

From the implementation results shown in table II we
analyze how area and throughput affect the performance and
efficiency of the proposed hardware architectures.

As it can be observed in figure 6, there is a limit in the
performance as the factor unrolling increases. According to
these results, being the 4x architecture the best performer
further research is motivated to explore optimizations of
unrolled architectures for 𝑁 near to 4. On the contrary, the
efficiency is reduced as the unrolling factor 𝑁 increases, see
figure 7. This is due to two main reasons: 1) all the instructions
inside the critical loop of SHA-512 are computed in a single
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TABLE III
A COMPARISON OF HARDWARE ARCHITECTURES FOR THE SHA-512

ALGORITHM.

Work Hw resources Impl. results

[13] 271 MHz 46 Mbps

251 Slices

[14] 74 MHz 467 Mbps

1x 2384 CLBs

81 ciclos de reloj

[15] 69 MHz 442 Mbps

1x 2545 Slices 0.164 Mbps/Slice

82 ciclos de reloj

[12] 106.65 MHz 1365 Mbps

1x 2073 CLBs

[16] 72 MHz 1034 Mbps

5x 3517 Slices

[17] 80.21 MHz 1026.68 Mbps

1x 3213 Slices

80 ciclos de reloj

[18] 53 MHz 1292 Mbps

2x 2385 Slices

42 ciclos de reloj

Proposed 1x 81.01 MHz 1024 Mbps

2667 Slices 0.384 Mbps/Slice

81 ciclos de reloj

Proposed 55.75 MHz 1392 Gbps

2x 4422 Slices 0.314 Mbps/Slice

41 ciclos de reloj

Proposed 33.147 MHz 1616 Mbps

4x 5164 Slices 0.154 Mbps/Slice

21 ciclos de reloj

clock cycle, that is, the replicated logic when applying the
unrolling is only combinatorial logic which increases the
critical path, 2) additionally to the more area resources for
the unrolling, it is necessary more area resources for routing
and interconnecting all the involved buses. The results shown
in figures 6 and 7 allow establishing area/performance trade
offs when deciding what level of parallelism could be applied
in the implementation of SHA-512 algorithm based on specific
requirements of performance and efficiency. As the hardware
architectures unrolls more iterations of the critical loop in
the SHA-512 algorithm they gets less inefficient, with low
clock frequencies which in some cases is a requirement for
an application still achieving an acceptable performance. In
this example, the low clock frequency could lead to hardware
solutions with low power consumption.

V. CONCLUSION

Design techniques such as loop unrolling may improve
architecture performance; however, there is a limit in the
unrolling level where it can contribute to this improvement,
besides, it does not exist proportionality in improving. Further-
more, loop unrolling allows high performance architectures
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Fig. 6. Performance of SHA-512 algorithm implemented at different
unrolling factors 𝑁 .
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Fig. 7. Efficiency of SHA-512 algorithm implemented at different unrolling
factors 𝑁 .

with high data dependency as is the case of the cryptographic
algorithm SHA-512. In this way, performance is limited when
the architecture is designed to process a considerable amount
of data because the tools for place and routing require more
hardware elements as the unrolling level increases, creating so
large paths. Also, the limit in performance is due to high data
dependency, feedback and the necessity of processing an entire
block to be able to start processing the next standardized block
for the SHA-512 algorithm. Throughput relates indirectly
with the critical path generated when placing and routing the
hardware elements, which establishes the maximum operation
frequency. New improvements must be done to shorten the
critical path mainly in the high dependency, without neglecting
combinational paths from signals coming from control units.
Unrolled implementations proposed in this work exhibit a
high throughput at resources expenses but with a low clock
frequency that benefits in lower power consumption. These
implementations show that performance can not improve pro-
portionally to the level of unrolling; it may even diminish
from 5x unrolling. However, hardware resources and critical
path increase proportionally to the level of unrolling. As the
unrolling level increases two issues are observed: 𝑖) there is
a point where performance start diminishing while hardware
resources and efficiency per area diminishes, and 𝑖𝑖) efficiency
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per frequency increases since there is a bigger processing
capacity per clock cycle, independently of the device. Finally,
a power consumption analysis would be interesting to know
how it changes as the hardware resources increases and the
clock frequency diminishes. Besides, it would be important to
work the segmentation technique to perform new analysis.
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